Keyword [xUnit] [Activation Unit] [GCN]
Kligvasser I, Rott Shaham T, Michaeli T. xUnit: learning a spatial activation function for efficient image restoration[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 2433-2442.
1. Overview
目前
- 0% parameters in Activation unit (nonlinearities), Conv (spatial processing)
- Network deeper and deeper
因此,论文提出xUnit结构
- learnable nonlinear function with spatial connection
- reduce layer
- used in low-level task (denoising, de-raining, super resolution)
1.1. Related Work
- ELUs
- SRCNN
- VDSR
- SRResNet
- EDSR
- ESPCN
- Binarized Neural Networks
- Deep Detail Network
- DehazeNet
- MobileNet
1.2. 模型
Conv+Activation形式如下:
1.2.1. ReLU
- o表示点乘,定义0/0=0.
1.2.2. xUnit
H_k为depth-wise convolution.
对于d-channel输入,d-channel输出而言,计算复杂度为
- 标准Conv. rxrxdxd
- depth-wise Conv. rxrxd
2. Experiments
2.1. Compare
2.2. 特征图可视化
ReLU丢弃了大部分特征图(黑色),而xUnit大部分特征图都参与后续计算(白色)。
2.3. Denoising
2.4. De-raining
(PSNR) 28.94 VS 31.17.